Морские водоросли ловят азот из воздуха

26.04.2024

Азотфиксирующая бактерия, поселившись в водорослях, со временем стала внутриклеточной органеллой, связывающей атмосферный азот.

Водоросль Braarudosphaera bigelowii в тысячекратном увеличении. (Фото: Tyler Coale / University of California, Santa Cruz) Открыть в полном размере ‹ ›

Азот нужен всем живым организмам – в конце концов, без него не будет ни аминокислот, ни азотистых оснований, составляющих генетический алфавит. Больше всего азота в воздухе (78%), однако молекула газообразного азота N2 очень прочная, вовлечь её в биохимические реакции чрезвычайно трудно. Такие умения есть только у бактерий и архей, и то далеко не у всех. Азотфиксирующие бактерии и археи утилизируют атмосферный азот с помощью целой серии ферментов, причём им нужно одновременно заботиться о том, чтобы не подпускать к этим ферментам кислород – О2 заблокирует азотфиксирующие процессы.

Что до эукариот, то никто из них – ни растения, ни животные, ни грибы, никто – брать азот из воздуха не может. Им приходится использовать уже готовые органические соединения с азотом, которые прежде принадлежали кому-то живому. Впрочем, некоторые растения сумели наладить симбиоз с азотфиксирующими бактериями, поселив их в корневых клубеньках. Это, в первую очередь, представители семейства Бобовых, но также и некоторые из Крушиновых, Восковницевых и ещё из некоторых семейств. Растения с клубеньковыми бактериями используют пойманный азот для своих нужд, но когда растение погибает, много зафиксированного азота выходит в почву, обогащая её.

Впрочем, насчёт того, что никто из эукариот не может сам фиксировать азот, нужно сделать одну оговорку: в недавней статье в Science сотрудники Калифорнийского университета в Санта-Круз пишут, что это умеет делать одноклеточная морская водоросль Braarudosphaera bigelowii. О том, что она фиксирует азот, писали ещё лет десять назад. Но тогда считалось, что в ней живут бактерии-симбионты: бактерии получают от водоросли углеродные соединения, отдавая ей связанный азот в виде ионов аммония. Однако со временем исследователи заподозрили, что бактерии внутри водоросли – не самостоятельные клетки, а органеллы, вроде митохондрий или хлоропластов.

Когда-то, впрочем, органеллы были бактериями. В них до сих пор есть своя ДНК, подобно тому, как своя ДНК есть у митохондрий и хлоропластов. Генетические исследования говорят о том, что эндосимбиоз между азотфиксирующими бактериями и водорослями начался около 100 млн лет назад. Точнее, надо говорить о предках бактерий и водорослей, потому что вряд ли они за эти миллионы лет остались такими же, как были. Кстати, считается, что похожим образом появились эукариоты: в ещё более древние времена какие-то бактерии и археи решили жить вместе, то есть один внутри другого, вступив в эндосимбиотические отношения; эндосимбионт потом превратился в митохондрию. (Со временем клетки древних эукариот приобрели ещё одного бактериального эндосимбионта, на этот раз способного к фотосинтезу – он, как можно догадаться, дал начало хлоропластам.)

Однако в случае водоросли B. bigelowii возникает вопрос, действительно ли её бактерия-симбионт превратилась в органеллу. Если мы имеем дело с органеллой, то она подчиняется клеточному циклу, то есть когда водоросль делится, число органелл должно предварительно увеличиться, чтобы их получили водоросли следующего поколения. У B. bigelowii всё так и происходит: её азотные органеллы, названные нитропластами, делятся в точности перед клеточным делением, тогда же, когда делятся митохондрии с хлоропластами. Кроме того, настоящая клеточная органелла несамостоятельна в смысле молекулярного хозяйства, ей нужны белки, которые ей даёт клетка. И тут тоже оказалось, что у нитропластов не хватает белков для обмена веществ – эти белки кодируются ядерной ДНК водоросли, и водорослевая клетка, синтезировав их, отдаёт их нитропластам.

Деление клетки Braarudosphaera bigelowii. Тёмно-синий комок в центре – ядро; синие тяжи по бокам – нитропласты; светло-зелёные шары вверху – хлоропласты; зелёные вкрапления – митохондрии. (Иллюстрация: Valentina Loconte / University of California, San Francisco)

Стоит ещё раз уточнить, что саму по себе водоросль B. bigelowii описали очень давно, да и азотфиксирующие свойства её начали изучать не вчера. Сейчас исследователи выясняли, что именно представляют собой азотфиксирующие установки-нитропласты внутри неё, насколько сильно они интегрированы в водорослевую клетку, считать ли эти установки всё ещё самостоятельными бактериями или уже органеллами. Оказалось, что нитропласты действительно органеллы, а не бактерии-симбионты, и про B. bigelowii можно говорить, что азот она ловит сама. Может быть, генетические уловки, позволившие стать ей первым эукариотическим поедателем атмосферного азота, можно пересадить другим водорослям или даже высшим растениям – но это уже предмет дальнейших биотехнологических экспериментов.

Автор: Кирилл Стасевич

Статьи по теме:

#эволюция #водоросли #бактерии #обмен веществ

У знаменитой группы архей нашли клеточные структуры, которые должны помогать им манипулировать собственной мембраной.

Проживая высоко на деревьях, безлиственные орхидеи держат обширный «парк» бактериальных симбионтов, снабжающих их необходимыми питательными веществами.

Новый метод синтеза аммиака может сделать химическое производство чище.

Полисахариды, которыми покрыты бурые водоросли, запирают в себе углекислый газ прочно и надолго.

Постоянная облачность над антарктическими водами Мирового океана связана с деятельностью фитопланктона, помогающего конденсироваться облачным каплям влаги.

Древнейший одноклеточный организм «проглотил» бактерию и сделал из нее «солнечную электростанцию».

Добавить комментарий

Your email address will not be published.

Предыдущая история

Бонобо добавили агрессивности

Next Story

Чистый воздух греет землю

Последние из Наука и образование

Рейтинг мировых университетов THE 2025: Оксфорд удерживает первое место, проверьте топ-10 и их общий балл

09.11.2024
Оксфордский университет, Массачусетский технологический институт (MIT) и Гарвардский университет заняли первые три места в рейтинге мировых университетов THE 2025. Times Higher Education (THE) поставил

Первоклассники Туркменистана получат в подарок от Президента усовершенствованные модели ноутбуков

30.08.2024
В новом 2024-2025 учебном году более 155 тысяч первоклассников Туркменистана получат в подарок от имени Президента Сердара Бердымухамедова усовершенствованные модели портативных компьютеров. Среди новшеств

Учебная поездка в Малайзию

30.08.2024
В канун нового, 2024-2025 учебного года вузовская делегация в составе преподавателей и студентов Международного университета нефти и газа имени Ягшыгелди Какаева, а также его

«Цифроземье 2024»: ИТ-форум, где будущее уже здесь

20.08.2024
В начале осени Воронеж станет эпицентром цифровых инноваций. 5 сентября в Сити-парке «Град» пройдет ИТ-форум «Цифроземье 2024», который объединит специалистов, предпринимателей, экспертов и всех,
Перейти кTop